Metharbital

Identification

Generic Name
Metharbital
DrugBank Accession Number
DB00463
Background

Metharbital is a barbiturate anticonvulsant, similar to phenobarbital, marketed as Gemonil by Abbott Laboratories. It was patented in 1905 by Emil Fischer of Merck.

Type
Small Molecule
Groups
Withdrawn
Structure
Weight
Average: 198.2191
Monoisotopic: 198.100442324
Chemical Formula
C9H14N2O3
Synonyms
  • Metarbital
  • Metharbital
  • Metharbitalum

Pharmacology

Indication

Metharbital is used for the treatment of epilepsy.

Reduce drug development failure rates
Build, train, & validate machine-learning models
with evidence-based and structured datasets.
See how
Build, train, & validate predictive machine-learning models with structured datasets.
See how
Contraindications & Blackbox Warnings
Prevent Adverse Drug Events Today
Tap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.
Learn more
Avoid life-threatening adverse drug events with our Clinical API
Learn more
Pharmacodynamics

Metharbital, a barbiturate, is used for the treatment of short term insomnia. It belongs to a group of medicines called central nervous system (CNS) depressants that induce drowsiness and relieve tension or nervousness. Little analgesia is conferred by barbiturates; their use in the presence of pain may result in excitation.

Mechanism of action

Metharbital binds at a distinct binding site associated with a Cl- ionopore at the GABAA receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged. All of these effects are associated with marked decreases in GABA-sensitive neuronal calcium conductance (gCa). The net result of barbiturate action is acute potentiation of inhibitory GABAergic tone. Barbiturates also act through potent (if less well characterized) and direct inhibition of excitatory AMPA-type glutamate receptors, resulting in a profound suppression of glutamatergic neurotransmission.

TargetActionsOrganism
AGamma-aminobutyric acid receptor subunit alpha-2
potentiator
Humans
AGamma-aminobutyric acid receptor subunit alpha-3
potentiator
Humans
AGamma-aminobutyric acid receptor subunit alpha-4
potentiator
Humans
AGamma-aminobutyric acid receptor subunit alpha-5
potentiator
Humans
AGamma-aminobutyric acid receptor subunit alpha-6
potentiator
Humans
AGABA(A) Receptor
positive allosteric modulator
Humans
AGamma-aminobutyric acid receptor subunit alpha-1
potentiator
Humans
UNeuronal acetylcholine receptor subunit alpha-4
antagonist
Humans
UNeuronal acetylcholine receptor subunit alpha-7
antagonist
Humans
UGlutamate receptor 2
antagonist
Humans
UGlutamate receptor ionotropic, kainate 2
antagonist
Humans
Absorption

Not Available

Volume of distribution

Not Available

Protein binding

Not Available

Metabolism
Not Available
Route of elimination

Not Available

Half-life

Not Available

Clearance

Not Available

Adverse Effects
Improve decision support & research outcomes
With structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!
See the data
Improve decision support & research outcomes with our structured adverse effects data.
See a data sample
Toxicity

Signs of overdose include confusion (severe), decrease in or loss of reflexes, drowsiness (severe), fever, irritability (continuing), low body temperature, poor judgment, shortness of breath or slow or troubled breathing, slow heartbeat, slurred speech, staggering, trouble in sleeping, unusual movements of the eyes, weakness (severe).

Pathways
Not Available
Pharmacogenomic Effects/ADRs
Not Available

Interactions

Drug Interactions
This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
DrugInteraction
1,2-BenzodiazepineThe risk or severity of CNS depression can be increased when Metharbital is combined with 1,2-Benzodiazepine.
AcetazolamideThe risk or severity of CNS depression can be increased when Metharbital is combined with Acetazolamide.
AcetophenazineThe risk or severity of CNS depression can be increased when Metharbital is combined with Acetophenazine.
AclidiniumThe risk or severity of adverse effects can be increased when Metharbital is combined with Aclidinium.
AgomelatineThe risk or severity of CNS depression can be increased when Metharbital is combined with Agomelatine.
Food Interactions
Not Available

Products

Drug product information from 10+ global regions
Our datasets provide approved product information including:
dosage, form, labeller, route of administration, and marketing period.
Access now
Access drug product information from over 10 global regions.
Access now
International/Other Brands
Gemonil (Abbott Laboratories)

Categories

ATC Codes
N03AA30 — Metharbital
Drug Categories
Chemical TaxonomyProvided by Classyfire
Description
This compound belongs to the class of organic compounds known as barbituric acid derivatives. These are compounds containing a perhydropyrimidine ring substituted at C-2, -4 and -6 by oxo groups.
Kingdom
Organic compounds
Super Class
Organoheterocyclic compounds
Class
Diazines
Sub Class
Pyrimidines and pyrimidine derivatives
Direct Parent
Barbituric acid derivatives
Alternative Parents
N-acyl ureas / Diazinanes / Dicarboximides / Azacyclic compounds / Organopnictogen compounds / Organonitrogen compounds / Organic oxides / Hydrocarbon derivatives / Carbonyl compounds
Substituents
1,3-diazinane / Aliphatic heteromonocyclic compound / Azacycle / Barbiturate / Carbonic acid derivative / Carbonyl group / Carboxylic acid derivative / Dicarboximide / Hydrocarbon derivative / N-acyl urea
Molecular Framework
Aliphatic heteromonocyclic compounds
External Descriptors
Not Available
Affected organisms
  • Humans and other mammals

Chemical Identifiers

UNII
02OS7K758T
CAS number
50-11-3
InChI Key
FWJKNZONDWOGMI-UHFFFAOYSA-N
InChI
InChI=1S/C9H14N2O3/c1-4-9(5-2)6(12)10-8(14)11(3)7(9)13/h4-5H2,1-3H3,(H,10,12,14)
IUPAC Name
5,5-diethyl-1-methyl-1,3-diazinane-2,4,6-trione
SMILES
CCC1(CC)C(=O)NC(=O)N(C)C1=O

References

General References
Not Available
Human Metabolome Database
HMDB0014606
KEGG Drug
D01382
PubChem Compound
4099
PubChem Substance
46508167
ChemSpider
3957
RxNav
6825
ChEBI
31827
ChEMBL
CHEMBL450
ZINC
ZINC000005508997
Therapeutic Targets Database
DAP000675
PharmGKB
PA164746525
PDBe Ligand
VOK
Wikipedia
Metharbital
PDB Entries
5stf

Clinical Trials

Clinical Trials
PhaseStatusPurposeConditionsCount

Pharmacoeconomics

Manufacturers
  • Abbott laboratories pharmaceutical products div
Packagers
Not Available
Dosage Forms
Not Available
Prices
Not Available
Patents
Not Available

Properties

State
Solid
Experimental Properties
PropertyValueSource
melting point (°C)150.5 °CPhysProp
water solubility1980 mg/L (at 25 °C)YALKOWSKY,SH & DANNENFELSER,RM (1992)
logP1.15HANSCH,C ET AL. (1995)
logS-2.23ADME Research, USCD
pKa8.01 (at 25 °C)HANSCH,C & LEO,AJ (1985)
Predicted Properties
PropertyValueSource
Water Solubility19.5 mg/mLALOGPS
logP1.18ALOGPS
logP0.94Chemaxon
logS-1ALOGPS
pKa (Strongest Acidic)7.75Chemaxon
Physiological Charge0Chemaxon
Hydrogen Acceptor Count3Chemaxon
Hydrogen Donor Count1Chemaxon
Polar Surface Area66.48 Å2Chemaxon
Rotatable Bond Count2Chemaxon
Refractivity49.15 m3·mol-1Chemaxon
Polarizability19.6 Å3Chemaxon
Number of Rings1Chemaxon
Bioavailability1Chemaxon
Rule of FiveYesChemaxon
Ghose FilterYesChemaxon
Veber's RuleNoChemaxon
MDDR-like RuleNoChemaxon
Predicted ADMET Features
PropertyValueProbability
Human Intestinal Absorption+0.9716
Blood Brain Barrier+0.9862
Caco-2 permeable+0.5234
P-glycoprotein substrateNon-substrate0.6518
P-glycoprotein inhibitor INon-inhibitor0.6178
P-glycoprotein inhibitor IINon-inhibitor0.95
Renal organic cation transporterNon-inhibitor0.92
CYP450 2C9 substrateNon-substrate0.8243
CYP450 2D6 substrateNon-substrate0.9033
CYP450 3A4 substrateNon-substrate0.6773
CYP450 1A2 substrateNon-inhibitor0.8845
CYP450 2C9 inhibitorNon-inhibitor0.8616
CYP450 2D6 inhibitorNon-inhibitor0.9379
CYP450 2C19 inhibitorNon-inhibitor0.8585
CYP450 3A4 inhibitorNon-inhibitor0.9702
CYP450 inhibitory promiscuityLow CYP Inhibitory Promiscuity0.9834
Ames testNon AMES toxic0.8918
CarcinogenicityNon-carcinogens0.8406
BiodegradationNot ready biodegradable0.8078
Rat acute toxicity2.8286 LD50, mol/kg Not applicable
hERG inhibition (predictor I)Weak inhibitor0.9806
hERG inhibition (predictor II)Non-inhibitor0.9557
ADMET data is predicted using admetSAR, a free tool for evaluating chemical ADMET properties. (23092397)

Spectra

Mass Spec (NIST)
Download (9.12 KB)
Spectra
SpectrumSpectrum TypeSplash Key
Predicted GC-MS Spectrum - GC-MSPredicted GC-MSsplash10-00nf-5900000000-e2ee6e9af5dc0905e6cb
GC-MS Spectrum - EI-BGC-MSsplash10-00di-8900000000-5c20588bb225d0b4ed7c
Mass Spectrum (Electron Ionization)MSsplash10-0ab9-5900000000-a7d47fbe125ceae08efb
Predicted MS/MS Spectrum - 10V, Positive (Annotated)Predicted LC-MS/MSsplash10-0002-1900000000-870483205fbea7527611
Predicted MS/MS Spectrum - 10V, Negative (Annotated)Predicted LC-MS/MSsplash10-0002-0900000000-3100538ea315c1665393
Predicted MS/MS Spectrum - 20V, Negative (Annotated)Predicted LC-MS/MSsplash10-00kf-9700000000-35e56302d29a0c0fce1c
Predicted MS/MS Spectrum - 20V, Positive (Annotated)Predicted LC-MS/MSsplash10-00di-2900000000-13e13dae729bd0429784
Predicted MS/MS Spectrum - 40V, Negative (Annotated)Predicted LC-MS/MSsplash10-052f-9700000000-e92a0e3a2213841b0c0e
Predicted MS/MS Spectrum - 40V, Positive (Annotated)Predicted LC-MS/MSsplash10-0006-9100000000-7fb88c0a69f52bcba5e9
Predicted 1H NMR Spectrum1D NMRNot Applicable
Predicted 13C NMR Spectrum1D NMRNot Applicable
Chromatographic Properties
Collision Cross Sections (CCS)
AdductCCS Value (Å2)Source typeSource
[M-H]-147.0973568
predicted
DarkChem Lite v0.1.0
[M-H]-146.9714568
predicted
DarkChem Lite v0.1.0
[M-H]-139.84764
predicted
DeepCCS 1.0 (2019)
[M+H]+147.5226568
predicted
DarkChem Lite v0.1.0
[M+H]+147.5364568
predicted
DarkChem Lite v0.1.0
[M+H]+143.13911
predicted
DeepCCS 1.0 (2019)
[M+Na]+147.2642568
predicted
DarkChem Lite v0.1.0
[M+Na]+147.1970568
predicted
DarkChem Lite v0.1.0
[M+Na]+151.88606
predicted
DeepCCS 1.0 (2019)

Targets

Build, predict & validate machine-learning models
Use our structured and evidence-based datasets to unlock new
insights and accelerate drug research.
Learn more
Use our structured and evidence-based datasets to unlock new insights and accelerate drug research.
Learn more
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Potentiator
General Function
Inhibitory extracellular ligand-gated ion channel activity
Specific Function
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name
GABRA2
Uniprot ID
P47869
Uniprot Name
Gamma-aminobutyric acid receptor subunit alpha-2
Molecular Weight
51325.85 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Potentiator
General Function
Inhibitory extracellular ligand-gated ion channel activity
Specific Function
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name
GABRA3
Uniprot ID
P34903
Uniprot Name
Gamma-aminobutyric acid receptor subunit alpha-3
Molecular Weight
55164.055 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Potentiator
General Function
Inhibitory extracellular ligand-gated ion channel activity
Specific Function
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name
GABRA4
Uniprot ID
P48169
Uniprot Name
Gamma-aminobutyric acid receptor subunit alpha-4
Molecular Weight
61622.645 Da
References
  1. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Potentiator
General Function
Transporter activity
Specific Function
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name
GABRA5
Uniprot ID
P31644
Uniprot Name
Gamma-aminobutyric acid receptor subunit alpha-5
Molecular Weight
52145.645 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Potentiator
General Function
Inhibitory extracellular ligand-gated ion channel activity
Specific Function
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name
GABRA6
Uniprot ID
Q16445
Uniprot Name
Gamma-aminobutyric acid receptor subunit alpha-6
Molecular Weight
51023.69 Da
References
  1. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [Article]
  2. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Potentiator
General Function
Inhibitory extracellular ligand-gated ion channel activity
Specific Function
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine...
Gene Name
GABRA1
Uniprot ID
P14867
Uniprot Name
Gamma-aminobutyric acid receptor subunit alpha-1
Molecular Weight
51801.395 Da
References
  1. Whiting PJ: The GABAA receptor gene family: new opportunities for drug development. Curr Opin Drug Discov Devel. 2003 Sep;6(5):648-57. [Article]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [Article]
  3. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
  4. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [Article]
  5. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [Article]
  6. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [Article]
  7. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Antagonist
General Function
Ligand-gated ion channel activity
Specific Function
After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane permeabl...
Gene Name
CHRNA4
Uniprot ID
P43681
Uniprot Name
Neuronal acetylcholine receptor subunit alpha-4
Molecular Weight
69956.47 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
  2. Arias HR, Bhumireddy P: Anesthetics as chemical tools to study the structure and function of nicotinic acetylcholine receptors. Curr Protein Pept Sci. 2005 Oct;6(5):451-72. [Article]
  3. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Antagonist
General Function
Toxic substance binding
Specific Function
After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. The cha...
Gene Name
CHRNA7
Uniprot ID
P36544
Uniprot Name
Neuronal acetylcholine receptor subunit alpha-7
Molecular Weight
56448.925 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
  2. Arias HR, Bhumireddy P: Anesthetics as chemical tools to study the structure and function of nicotinic acetylcholine receptors. Curr Protein Pept Sci. 2005 Oct;6(5):451-72. [Article]
  3. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Antagonist
General Function
Ionotropic glutamate receptor activity
Specific Function
Receptor for glutamate that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. L-glutamate acts as an excitatory ne...
Gene Name
GRIA2
Uniprot ID
P42262
Uniprot Name
Glutamate receptor 2
Molecular Weight
98820.32 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
  2. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Antagonist
General Function
Kainate selective glutamate receptor activity
Specific Function
Ionotropic glutamate receptor. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a co...
Gene Name
GRIK2
Uniprot ID
Q13002
Uniprot Name
Glutamate receptor ionotropic, kainate 2
Molecular Weight
102582.475 Da
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [Article]
  2. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [Article]

Drug created at June 13, 2005 13:24 / Updated at March 03, 2024 02:26